Soft Computing
https://doi.org/10.1007/s00500-021-06475-w

APPLICATION OF SOFT COMPUTING l‘)

Check for
updates

Efficient network dismantling through genetic algorithms
Wei Lin' - Sebastian Wandelt?3 . Xiaogian Sun'23

Accepted: 16 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Throughout the past decades, network dismantling gained an increasing interest by the research community, given tremendous
importance of robust socio-technical systems. The problem of optimally dismantling a given network is provably NP-hard.
Accordingly, existing studies on network dismantling resort to various heuristics, including the use of node centralities and
finely tuned decycling and cutting techniques. However, it is known that these existing techniques largely lack the optimal
baseline. Particularly, these techniques perform bad when compared to (expensive-to-compute) betweenness-based attacks.
Therefore, there is a strong need for developing scalable, yet accurate attacking methods for being able to understand the
robustness of large, real-world complex systems. In this study, we propose a novel network attack technique based on genetic
algorithms. In order to develop a scalable framework, we first design an exact method for measuring the effectiveness of an
attack, requiring O (| E|) time, where | E| is the number of edges in the network. Since this algorithm runs in linear time of the
network size, it can scale up well for very large networks. Second, we develop and analyze a collection of genetic population
constructors, which aim at providing a rich set of initial genetic material to the framework. Several genetic operators are
proposed, which preferably select previously critical nodes to be attacked first. Finally, we evaluate our framework on a wide
range of real-world networks. Results show that our novel technique significantly outperforms the state-of-the-art methods,
providing an interesting sweet spot between attack quality and computational complexity. We believe that our work contributes
toward the scalable robustness estimation of complex networks, and that the perspective of using non-deterministic methods
will inspire future research in this domain.

Keywords Complex networks - Dismantling - Genetic algorithms

1 Introduction network perspective include power grids (Albert et al. 2004;

Cuadra et al. 2015), transportation systems (Colizza et al.

A plethora of real-world systems can be described as com-
plex networks, with nodes representing atomic elements of
the system and edges encoding their interactions. Examples
for the successful modeling of systems from the complex

B Xiaogian Sun
sunxq@buaa.edu.cn
Wei Lin
louislin@buaa.edu.cn

Sebastian Wandelt
wandelt@buaa.edu.cn

School of General Engineering, Beihang University, 100191
Beijing, China

2 National Key Laboratory of CNS/ATM, School of Electronic
and Information Engineering, Beihang University, 100191
Beijing, China

Beihang Hangzhou Innovation Institute Yuhang, Xixi
Octagon City, Yuhang District 310023, Hangzhou, China

Published online: 19 November 2021

2006; Zanin and Lillo 2013; Sun et al. 2015), communi-
cation infrastructure (Yook et al. 2002; Albert and Barabasi
2002), social networks Duijn etal. (2014), and biological sys-
tems Merico et al. (2009). Complex networks facilitate the
identification of hidden patterns in these systems. One such
phenomenon is the robustness of the network against node or
link failures. Most networks carry a rather well-understood
resilience against random failures, where individual nodes
fail with a given probability. Regarding the resilience against
targeted attacks, many real-world systems are susceptible to
attacks of so-called critical nodes, where the attack to a few
critical nodes often leads to a cascade of the whole network,
which reduces the network’s function significantly Peters
et al. (2008). Examples for such cascading effects during
the past few years include large-scale power outages in US
and Italy (Ash and Newth 2007; Corsi and Sabelli 2004),
virus-spreading on the Internet Strogatz (2001), the crucial

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06475-w&domain=pdf
http://orcid.org/0000-0002-8713-142X

W. Lin et al.

role of particular individuals in social networks Lerman and
Ghosh (2010), and large-scale failures in transportation sys-
tems Brooker (2010). These disruptions have tremendous
socio-economical effects on the society Gao et al. (2015).
Accordingly, analyzing and understanding the robustness of
networks against targeted attacks is an important, yet chal-
lenging research problem.

The identification of an optimal attack to a network is
computationally hard Braunstein et al. (2016). It can be
shown that the underlying node selection/ordering problem
is NP-hard, which means that it is unlikely to develop exact
techniques which scale up for networks of size beyond a
few dozens of nodes. Accordingly, existing methods rely on
the use of heuristics, which can be divided into two types.
The first type of heuristics are node centralities. Such cen-
tralities measure the importance of individual nodes in the
network, usually based on some topological properties. For
instance, if a node has a large number of neighbors, it can be
considered influential (at a local scale). Other centralities are
tailored toward global scales, such as betweenness and close-
ness. It has been shown that betweenness-based attacks are
particularly efficient Wandelt et al. (2018); specifically if the
betweenness values are recomputed under node removal (so-
called interactive attacks). Unfortunately, the computational
complexity of interactive betweenness attack is at least cubic
in the number of nodes Brandes (2001); the exact complex-
ity depends on the network density and topology. Therefore,
the computation of interactive betweenness-based attack is
restricted to networks of a few thousands of nodes, whereas
in biological or social systems, the number of nodes can
easily reach hundreds of millions. Note that, however, the
results of this method are not optimal; it is just empirically
the best attacking method conceived so far. The second type
of methods in the literature are so-called network disman-
tling methods. These methods have in common that they were
designed specifically for the problem of generating network
attacks. The concepts used for dismantling vary, including
the computation of collective influence Morone et al. (2016),
a combination of decycling and tree breaking Braunstein
et al. (2016), or the identification of so-called articulation
points Tian et al. (2017), whose removal directly reduces
the size of the network’s largest component. These methods
were developed with the intention to compute attacks effi-
ciently for large-scale networks; at least for specific types,
e.g., strictly hierarchical networks. However, these methods
do not perform well even against interactive betweenness, let
alone yielding close-to-optimal results.

In this study, we take a different perspective on the network
dismantling problem. Instead of designing a deterministic
dismantling algorithm, we propose to use genetic algorithms
(GA) Whitley (1994) for computing attacks to the networks.
This idea is quite intuitive, given the fact that dismantling is
a hard optimization problem. From the perspective of algo-

@ Springer

rithm design, GA is quite different from those in the literature.
Most of the existing methods generate the attack sequence by
ranking the importance of nodes. These node-ranking-based
methods tend to neglect dependencies among nodes. GA not
only considers a single node, but focuses more on the attack
sequence composed of multiple nodes. In the course of GA,
the target network will be attacked many times with different
attack sequence. Based on the efficient computation of the
fitness function of an attack, GA can use the information of
network performance in the face of different attacks to mod-
ify the attack strategy and extract interesting sub-attacks from
parents, which is difficult to achieve by other algorithms.
Another significant advantage of GA is that it does not depend
on a particular network topology. The response of networks
with different structures to attacks is different. GA can learn
the vulnerability of networks from the previous attack, so
as to optimize its attack strategy. GA’s search ability mainly
depends on the gradient of attack performance near the global
or local optimal attack of the network. If the gradient is very
large, there is a possibility that GA will miss the optimal
solution. But unless a network is deliberately constructed,
this situation is very unlikely to happen. So GA has strong
applicability to networks of all kinds of topological structure.
However, there exists no successful study in the literature
for four main reasons. First of all, modeling the network
dismantling problem requires a fitness function. In the liter-
ature, the quality of an attack is usually measured by the R
value Schneider et al. (2011). The R value reflects the change
of giant connected component (GCC) size with an ongoing
attack to the network; smaller values of R indicate a high
effectiveness of the attack. The computation of the R value,
however, requires a time complexity of O(|N|* |E|), where
|N| is the number of nodes and | E| is the number of edges.
This means that even the computation of an attack’s quality
is very time-consuming for larger networks. Second, the con-
struction of genetic operators, e.g., mutation and crossover
is not intuitively clear, compared to other problems modeled
as chromosomes. Third, how to choose the initial popula-
tion is also a challenging problem. The initial population
largely determines the search direction and search space of
GA, and meanwhile, generating the initial population should
not cost too much time. Fourth, GA also involves a parameter
optimization issue. Different combinations of parameters can
have a huge impact on the results. Some parameter configura-
tions can achieve high solution quality, but correspondingly
the runtime can be considerable. Therefore, there is still a
trade-off between the quality of the results and the runtime.
The major contributions of our study are summarized as fol-
lows:

1. We propose an exact fitness function which requires
O(|E]) time, compared to the traditional O (|N| x |E|)
reported in the literature. Intuitively, our method computes

Efficient network dismantling through genetic algorithms

the R value backward, by reconstructing the graph after
the attack took place; which eliminates the need for simu-
lating forward-node removal. This breakthrough made it
possible to use GA in network dismantling.

2. We design appropriate genetic operators for the robust-
ness evaluation framework. Specifically, we design
crossover and mutation operators based on the notion
of local GCC-cascade, which measures the impact of an
individual node on the network’s functionality in a given
attack. By combining the local GCC-cascade information
of parents, we are able to create offsprings which com-
bine and preserve the attack-influential nodes of parents.
Similarly, we use the local GCC-cascade in the mutation
operator to push potentially influential nodes to the front
of an attack.

3. We propose several scalable techniques for generating
an initial population, based on fast-to-compute centrality
metrics as well as a novel condensation-based approx-
imation, which exploit the idea of k-means clustering
algorithm and reduces the initial node importance identifi-
cation problem to significantly smaller network instance.

4. We perform sensitivity analysis on variants of our method,
including different choices of the initial population and
genetic parameters. Experiments on a wide range of
real-world networks reveals that our method significantly
outperforms the state-of-the-art, by providing an interest-
ing sweet spot between attack quality and computational
complexity.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the preliminary concepts of complex networks
and how to estimate the network’s robustness. Section 3
introduces our framework based on genetic algorithms. The
performance of our method against the state-of-the-art is
compared in Sect. 4. Finally, Sect. 5 concludes the study
and provides some directions for future work.

2 Preliminaries on network robustness

This section introduces relevant background knowledge
on the robustness of complex networks. Specifically, Sect. 2.1
revisits fundamental terminology on complex network rep-
resentation. Section 2.2 reviews the concepts underlying the
estimation of network robustness.

2.1 Complex network terminology

A complex network G consists of a set of nodes N and a
set of edges E connecting pairs of nodes. In this study, we
restrict ourselves to undirected networks unless otherwise
stated; an extension to directed networks is straightforward,
with an adjusted definition of robustness. Edges in undirected

Table 1 List of abbreviation

Abbreviation Meaning

GA Genetic algorithm

GCC Giant connect component

DEG An attack method based on degree ranking.

DEGI An iterative version of DEG.

B An attack method based on betweenness ranking.

BI An iterative version of B.

CI Collective influence.

ND The network dismantling(also called MinSum)
method.

APTA Articulation point-targeted attack.

AP Articulation point.

RGB Residual giant bi-component.

R Robustness measure R.

IN| Number of nodes in the network.

|E| Number of edges in the network.

SUS Stochastic universal sampling.

graphs have no direction, i.e., any two connected nodes can
be reached in either direction. Given a network G, one com-
mon problem is to measure the importance of nodes in G.
This importance can be assessed from different perspectives,
depending on the application. Throughout the last decades,
several network centrality measures Friedkin (1991) have
turned out useful in cross-domain settings; we discuss a few
of these common ones below. The simplest node centrality
is the degree of a node n € N, which measures the number
of neighbors for a given node. This centrality is easy to com-
pute; in fact, it can be read off directly from the adjacency
list/matrix representation. Moreover, this metric is attractive,
because the intuitive meaning is very straightforward. The
degree, however, is a local measure of node importance. It
neglects the overall role of a node in the network. Global
centralities take a different perspective, by computing a mea-
sure on the whole network scale. One example for such a
method is node betweenness centrality. Betweenness cen-
trality measures how often a node n € N lies on the shortest
path between all pairs of other nodes Freeman (1977). For an
undirected network, betweenness is computed as follows:

2 Z(x,t)eE,s;éu,t;év 05 (V)
(INI = D(N|-2)

ey

Betweenness(v) =

where oy (v) = 1 if the shortest path from node s to node ¢
passes through node v (and 0 otherwise). Betweenness cen-
trality is adequate for measuring the importance of nodes
assuming a uniform flow between all pairs of nodes in the net-
work. Notably, computing the betweenness centrality of all
nodes in the network has a time complexity of O(|N | |E|).
Other common centrality metrics include closeness central-

@ Springer

W. Lin et al.

(d) Colored by eigenvector centrality

Fig. 1 An illustrative example with a Barabasi—Albert network Gy
with 12 nodes and 20 edges is discussed here. a—f visualize the result
of six centralities. Darker color represents higher centrality. Although

ity (measuring the average distance of a node to all other
nodes in the network) Sabidussi (1966), eigenvector central-
ity (the eigenvector of the largest eigenvalue of the adjacency
matrix) Bonacich (1972), Page Rank (measuring the cumu-
lative weight of links toward a node) Page et al. (1999),
and Katz centrality (a generalization of eigenvector central-
ity which measures the importance of a node based on the
importance of neighbors) Katz (1953).

In order to illustrate the introduced terminology, a small
network G with 12 nodes and 20 edges is discussed here.
Gy is an undirected Barabasi—Albert network (n=12, m=2,
where n is the number of nodes and m is the number of
edges to attach from a new node to existing nodes), which
is a scale-free graph with power-law degree distribution. In
Fig. 1, we colored the nodes in the network with six different
centralities. The darker the color, the higher the centrality is.
The importance of nodes estimated by these centralities is
mostly consistent with our intuition. For example, Node 1
has the lightest color in almost all charts and, accordingly, if
we remove this node, the effects are rather trivial; the remain-
der of the network will not be affected. On the contrary, if
we remove Node 2, the entire network’s functionality will be
reduced, since Node 2 is in the center and it can be regarded as
a hub of the network. Moreover, all centralities rank Node 2,
Node 3, Node 4 and Node 5 to be the top four most impor-
tant nodes, and Node 1 is considered to be the least important
node. Different centralities, however, also make distinct judg-
ments about the importance of certain nodes. For instance,
Node 10 has a betweenness centrality of 0, since Node 10
only links to Node 2 and Node 4, both of which are directly

@ Springer

(e) Colored by Katz centrality

(f) Colored by Page Rank centrality

different centralities have a certain consistency, they also make different
judgments on some nodes, such as Node 10

connected. Therefore, although Node 2 and Node 4 have
high betweenness centralities on their own, there is no short-
est path going through Node 10. Removing Node 10 will not
directly influence the interactions between other nodes in
the network. Regarding other centralities, on the other hand,
Node 10 still has a rather dark color. This can be understood
as one example for node betweenness capturing the role of
robustness much better than other centralities.

2.2 Network robustness

The analysis of complex network robustness originates in the
area of statistical physics. Specifically, the process of percola-
tion describes the behavior of connected clusters in a random
network. Inspired by this concept, the disintegration of a net-
work under a given attack A can be measured as the relative
reduction in the size of the giant/largest connected compo-
nent (GCC), and the GCC is the largest subset of nodes such
that there exists a path between all pairs of nodes in the subset.
Here, an attack A is a sequence of nodes, i.e., a permutation
of N. Smaller sizes of the remaining giant component, after
aprefix of A has been executed, can be interpreted as that the
attack strategy is more effective. This view follows the intu-
ition that the degree of functionality of a network strongly
correlates with the number of connected nodes. In this study,
we use the robustness measure R Schneider et al. (2011); an
extension to other measures, e.g., effective resistance cen-
trality Clemente and Cornaro (2020), can be considered in
future work. The R value directly reflects the change of GCC
size along with the attack. In real-world system, the GCC

Efficient network dismantling through genetic algorithms

is the core for the network’s ability to function properly.
Thus, smaller GCCs lead to poorer network functionality.
Note that one is usually interested in the relative size of the
GCC compared to the one of the original network. This leads
to a normalized GCC size under an attack which has a value
between 0.0 and 1.0. In the remainder, we always refer to the
normalized GCC size, unless mentioned otherwise. Given a
network G and an attack sequence A, the R value for A is
defined as:

N

1
R=~ QZZIS(Q))

where s(Q) is the size of GCC after removing the first Q
nodes in A.

When considering the robustness of a network G, one
actually refers to the R value under the most destructive
attack. The number of attacks to a network, however, is
tremendously large: With |N| nodes, one has |N|! differ-
ent node sequences. Accordingly, the identification of the
best attack and therefore a minimum R is computationally
difficult. In fact, it is known that even the underlying node
selection problem for a fixed number of nodes is NP-hard,
which means that it is unlikely to develop exact techniques
even for medium-sized networks. Moreover, it was shown
that attempts to model this problem as a mixed-integer prob-
lem for solving the problem toward optimality were doomed
to fail, given the large search space; a linear solver could
not scale beyond a few dozen of nodes. Accordingly, stud-
ies in the literature refer to using heuristics for the design
of effective targeted attacks. In the following, we review the
most recent and frequently used methods for the design of
attacks. First, it is easy to see that any node centrality metric
can be directly transformed into an attack, by simply ranking
all nodes in the network in decreasing order of their impor-
tance (assuming that larger centrality values indicate higher
importance). For such centrality-based attacking methods,
one distinguishes two variants: Static and interactive (or
dynamic). In the static case, the centrality values of nodes
are computed one time only. This view neglects an impor-
tant effect under a network attack: Once a node is removed
from the network (i.e., it has been attacked), the importance
of the remaining nodes often changes. Therefore, the recom-
putation of centrality metrics after removing a single node
from the network, often leads to significantly more effective
attacks. Below, we summarize four major centrality-based
attacking strategies used in the literature most of which can
be traced back to Holme et al. (2002):

e DEG: Nodes are attacked in decreasing order of their
degree. The degree is computed one time only, making
this a static attack. Intuitively, if a node has a high degree,

it indicates the node has more (local) influence to the net-
work. Once the node is removed, the direct neighborhood
might be either disconnected (in the worst case) or at least
the collection/consolidation function, usually performed
by hubs in order to reach the economies of scale, will
be disrupted. DEG takes only linear time to compute,
but it merely focuses on the local influence of a node,
which may not work well in some networks with special
structures.

e DEGI: An iterative version of DEG. Unlike static DEG,
DEGI recomputes the node degree each time one node is
removed. By recomputation, the procedure for generat-
ing a network attack indirectly takes the current attacking
prefix into consideration for selecting the next to-be-
attacked node Holme et al. (2002).

e B: Nodes are attacked in decreasing order of their
betweenness value. Betweenness represents the impor-
tance of a node at a global level, by considering all
shortest paths in a network. Different from DEG, B is
able to cut networks into pieces by attacking the center
(as induced by the all-pairs-of-nodes flow through the
network).

e BI: Aninteractive version of B. Unlike static B, Bl recom-
putes the betweenness centralities each time one node is
removed. By recomputation, the procedure for generat-
ing a network attack indirectly takes the current attacking
prefix into consideration for selecting the next to-be-
attacked node Holme et al. (2002).

Another type of methods have gained popularity in recent
years, the so-called network dismantling methods. These
methods were tailored specifically for generating network
attacks. The major motivation for these studies was that
degree turned out to be far from the optimal attack; and other
centrality metrics were either not significantly better or have
a much higher computational complexity. Therefore, these
methods were conceived with the goal to compute attacks
efficiently even for large networks. The concepts underlying
these methods vary; we summarize these methods below:

e CI: The collective influence (CI) of a node is an index
of node importance based on percolation theory Morone
and Makse (2015). Technically, it can be understood as
a kind of extension to the degree centrality to a higher
dimension. The CI value of a node is defined as follows:

CLG) =k —1) Z (kj —1) 3

jedB(.l)

where k; is the degree of node i, d B(i,) is the frontier of
the ball of radius / centered on node i. In each iteration,
this algorithm removes the node with the highest CI value,
until the entire network is dismantled. The advantage of

@ Springer

W. Lin et al.

(c) ba-1k-2k [N|=1000 [E|=1996

Fig. 2 Two example networks (left) and attack curves visualizing the
change in GCC size with an ongoing attack (right). In the legends, all
seven methods are ordered by increasing value of R. It is easy to see
that BI always outperforms other methods, but it also takes the longest

Cl is its accuracy of node importance evaluation under
O (|N|*log|N|) time complexity for strictly hierarchical
networks. Given its semi-global design, as controlled by
the ball size [, CI can identify nodes with low degrees but
with important roles in network structure and function.
ND: The network dismantling (also called MinSum)
algorithm is designed around a three-stage procedure
Braunstein et al. (2016). At first, the network is being
decycled. Intuitively, a network without cycles is much
easier to be attacked, following the intuition of CI. As a
second step, the tree-like network is broken into further
pieces, until an externally set size threshold C is reached.
Finally, a few short cycles are re-introduced to the net-
work, by improving the attack further, while maintaining
the maximum size under the user-set threshold.

APTA: Articulation point-targeted attack (APTA) Tian
etal. (2017) exploits the critical role of articulation points
(APs) in anetwork. An AP is a node in the network whose
removal increases the number of connected component.
A depth-first search-based algorithm developed by Tarjan
can identify the articulation points in linear timeTarjan

@ Springer

Relative |GCC|

Relative |GCC|

BI (R=0.224, t=266.53)
APTA (R=0.269, t=1.00)
DI (R=0.271, t=0.15)
B (R=0.293, +=2.72)
ND (R=0.300, t=1.34)
D (R=0.301, t=0.00)
CI2 (R=0.331, t=0.02)

0.8

0.6

04

0.2

0.0

0.2 0.4 0.6 08

(b) Fraction of attacked nodes

0.0

BI (R=0.084, t=427.44)
DI (R=0.097, t=0.39)
ND (R=0.098, t=0.45)

D (R=0.103, t=0.00)
APTA (R=0.103, t=0.05)
B (R=0.106, t=7.36)

CI2 (R=0.119, t=0.02)

0.8

0.6

04

0.2

0.0

0.2 04 0.6 0.8

(d) Fraction of attacked nodes

0.0

runtime. The differences between different attack strategies are quite
considerable. For the flower-8-1 network, the range of R is between
0.224 and 0.331, which indicates that the current heuristic methods still
have a large space for improvement

and Vishkin (1985). Moreover, with some book-keeping
during the traversals, it can also acquire the information
of component sizes after removing each AP, without the
need for an explicit simulation. Note that removal of an
AP may result in the creation of new APs and the disap-
pearance of the old APs. APTA iteratively removes the
most destructive AP whose removal results in the smallest
GCC size. After removing all APs, the leftover is called
residual giant bi-component (RGB) in which there are
at least two different paths between any two nodes. The
RGB can be further dismantled through removing the
nodes with the highest degree. The worst case time com-
plexity of APTA is O(|E|*log|N|), making APTA scale
up well with the size of the network.

In order to have an intuitive understanding of these meth-
ods, we choose two networks with different topological
structures and show the results of attack strategies in Fig. 2.
The robustness curves on the right-hand side show how the
GCC size changes as the number of removed nodes increases,
the performance of different methods can be quite different.

Efficient network dismantling through genetic algorithms

We can see that Bl always obtains the lowest R value (i.e., best
attack sequence), although these two networks have totally
different topological structures. In fact, Bl has a rather strong
generality, it performs excellently on most networks. Other
attack strategies are often limited to certain networks Wan-
delt et al. (2018).

In summary, all these methods have in common that they
do not compete well even against interactive betweenness,
let alone yielding close-to-optimal results. Their contribution
lies in the ability to compute a ranking on the network, which
usually outperforms the simple attacks based on degree. In
terms of the generality of the algorithm, some perform well
in networks with a particular topology (e.g., CI works excel-
lent on hierarchical networks), but it has shortcomings when
dealing with other, real-world networks. On the other hand,
for networks without (critical) APs, APTA cannot perform
well by design. Overall, these methods indeed have shorter
runtime than BI, but they are inferior in terms of the result
quality, and are far from achieving a high quality attack.

3 Solution methodology

In this section, we introduce the specific design and details of
our algorithm. Section 3.1 introduces the overall structure of
our algorithm. Section 3.2 introduces the chromosome repre-
sentation of network attacks. Section 3.3 presents the fitness
function as well as a novel linear-time algorithm for compu-
tation of the R value. Section 3.4 reports our strategies for
deriving the individuals in the initial population. Section 3.5
develops the genetic operators, covering selection, crossover,
and mutation.

3.1 Overall algorithm

We exploit GA for computing high-quality attacks in order to
address the network dismantling problem. GA starts from an
initial population, which consists of a collection of individu-
als. Each individual in the population represents an attack to
the network G under consideration. We have designed three
initial population generation methods. These three initial
population generators have different focuses and applicable
network types. Their combination can provide a potential ini-
tial population for GA. Throughout the process of evolution,
GA generate succeeding populations by the means of selec-
tion, crossover, and mutation. In crossover, we hope that the
good genes of parents will be passed on to their children.
Here, we use the size of GCC after the node is removed to
determine the priority of the node. If the size of GCC of
the network after the node is removed is large, it indicates
that the node is in the front of the attack sequence, and the
probability of the node appearing in the front of the attack
sequence among the child nodes is high. We find that this

crossover approach can effectively improve the attack qual-
ity, that is, reduce the R value. In mutation operators, we want
to place nodes that have a critical impact on network connec-
tions at the front of the attack sequence. Here, we choose the
change in GCC size to measure the importance of the node.
If the GCC size of the network is significantly reduced after
removing a node, the node should be attacked earlier, hoping
to move the cascade forward. In order to perform an informed
evolution, a fitness function needs to assess the quality of an
individual in the current population. In our case, the fitness
function measures the quality of an attack to G. Since the
fitness of an individual is reciprocal to the R value, we let
f= %. We have proposed an efficient algorithm for com-
puting R. Although R has been proposed for a long time,
all current methods of calculating R require quadratic run-
time. We reduce the runtime to linear by the inverse process
of the attack, namely the process of rebuilding the network.
Individuals with higher fitness values (accordingly smaller R
values) have a greater likelihood of being chosen and retained
in the next generation. After reaching a specific termination
criterion, the best individual is taken as the solution obtained
by GA. The flowchart of the algorithm is shown in Fig. 3.
Notably, the solution is not guaranteed to be optimal, since
GA can get stuck in local minima or specific parts of the
search space, but we show that GA exhibits excellent perfor-
mance (see Sect. 4).

3.2 Chromosome representation

Finding the best attack to a network G is, in essence, a node
ordering problem: We aim to find the sequence A of nodes,
i.e., a permutation of N, such that the R value of A with
respect to G is minimal. The representation of an attack is
a chromosome consisting of |/N| distinct node identifiers.
The first node in the chromosome is attacked first, and the
last node is attacked last; nodes in intermediate positions are
attacked accordingly.

3.3 Fitness function

At the heart of GA, we need a fitness function to evaluate
the quality of individuals. For network dismantling, the con-
cern is the giant connected component (GCC) Kitsak et al.
(2018) size after removing a fraction of nodes. Therefore,
we use the R value to evaluate the quality of a chromosome.
The standard way for computing the R value is to simu-
late the node removal as induced by the attack A. During
the process of simulation, the (relative) size of the GCC is
recorded at each step until the entire network is dismantled.
While this method is easy to implement, it has an obvious
pitfall. The runtime complexity is O (| N |*|E|). The reason is
that this process requires the execution of depth/breadth-first
search on the whole network for each iteration, which means

@ Springer

W. Lin et al.

(a) Input network

)

Degree (D-type)

(b) Population generators

Partition (B-type) Random (R-type) Other methods

. 4

.4 .4

(C) Initial population of network attacks

. 4

1.0

1.0 1.0 10

0.5

[Qeel
(el

0.5 1 8 0.5 1
o

0.0

0 10 20 30
Nodes

0 10 20 30

T T ™ 0.0 v
0 10 20 30 0
Nodes

0.0 T
0 10 20 30

Nodes Nodes

(€) Best attack

10
Jos
o

0.0

0 10 20 30

Nodes

[Ceel
° ° I
s & o
[Ceel
° °
° &

(d) Iterative process of applying genetic operators

While the number of non-improvement iterations is not reached:
1) Selection based on Roulette wheel method
2) Mutation by switching nodes in the attack, pushing vulnerable nodes to the front

3) Crossover by weighted combination of network attacks

U

Fig.3 GA starts from generating the initial population, then the population will be selected, mutated and crossovered through an iterative process,
until the termination criterion is met. At last, the best individual will be obtained as the result of the whole algorithm

a single traversing of all edges, i.e., O (| E|) is needed in the
worst case. Since there are N iterations, the overall com-
plexity is O(|N| x| E|). Accordingly, the computation of R
values for larger networks is intractable. While the computa-
tion can be accelerated by sampling Wandelt et al. (2017), the
accuracy of the results deteriorates significantly and unpre-
dictably. Accordingly, it is difficult to design a GA as long
as the runtime of the fitness function is at least quadratic in
the size of the network or the sampling is unacceptably high.

The process of R value computation can be considered
as a forward calculation (assuming an attack traversal from
left to right). In this study, we propose to compute the R
backward. Instead of attacking the network in order of the
attack sequence A, left to right, we build up the network
in the reverse order of A. The detailed process is shown
in Algorithm 1. We start with a set of |N| disconnected
components, each containing exactly one node. Then, we
traverse the attack from right to left. During this process,
we recover all edges which must be present in the network
at that stage of dismantling. In order to compute the GCC
size efficiently, we use the union-find data structure Conchon
and Filliatre (2007). Each union-find tree represents one con-
nected component. When we start with the last node of the
attack sequence, we add its links to the right components and
merge the corresponding union-find trees of the two edge’s
nodes. This process is repeated for | V| times, until the entire
network is recovered. In each iteration, the size of GCC is
simply the size of largest union-find tree. Therefore, we can
keep track of GCC size while building up the network effi-
ciently. Figure 4 shows the process of this algorithm on a
small network G. The time complexity of this improved R
computation is O(|E| x log|N|), compared to O (|N| * |E|)

@ Springer

Algorithm 1 Efficient computation of R (pseudo code)

Input: Network G with nodes N and edges E, attack sequence A
Output: R

1: isbuilt < {n : False} Yn e G

2: A < A.reverse()

3: UF < UnionFind(G)

4: for node € A do

5 isbuilt[node] < False

6: for neighbor € G.neighbor(node) do

7

8

if isbuilt[neighbor] then
: UF.Union(node, neighbor)
9: end if

10: end for
11: GCCs.append(UF .largest/N)
12: end for

13: return sum(GCCs)/|GCCs|

for the traditional variant. The time complexity is obtained
since we rebuilt the network edge by edge and adding one
edge takes O (log|N|) steps for merging the union-find trees.

3.4 Initial population

Genetic algorithms start with an initial population, which
provides an initial pool of genetic information. While the
fitness of the initial population might be very bad, genetic
operators (see Sect. 3.5 below) aim to gradually improve the
fitness. One obvious way for generating an initial population
is to simply generate random individuals, which corresponds
to random attacks, intuitively. Random attacks, however, are
usually very inefficient in dismantling real-world networks,
given networks’ ability to withstand such attacks. Therefore,
it is beneficial to provide non-random individuals to the ini-
tial gene pool. One critical factor for the initialization is that

Efficient network dismantling through genetic algorithms

(a) GCC size:0.08 (b) GCC size:0.08 (¢) GCC size:0.08

(d) GCC size:0.08 (e) GCC size:0.08 (f) GCC size:0.08

@\o
J

() GCC size:0.16 (h) GCC size:0.16 (1) GCC size:0.25

Fig. 4 Process of efficient computation of R value on Gy. We com-
pute the R value in a backward way. Starting from N disconnected
components, we traverse the attack sequence backwards and recover
the corresponding edges and nodes during this process. The union-find

the attacks can be generated fast. We discuss our initializa-
tion methods below. In total, there are three types of initial
individuals in our study:

1. D-type: This type of individual is obtained by comput-
ing the result of DEG attacking strategy. DEG can be
computed very fast (linear time). Having a degree-based
individual in the initial population can make the offspring
have the potential to put the nodes with high degree cen-
trality in the front of the attack sequence, which may
improve the quality of the attack. In our experiments,
we found that DEG often provides a good starting point
for GA. Only in case of narrow degree distributions, i.e.,
many nodes have highly similar degree values, degree is
not useful as an informed initialization method.

2. B-type: This type of individual aims at giving hints on the
potential betweenness centrality of nodes. Since comput-
ing the actual betweenness centrality is computationally
too expensive, we propose a kind of approximation here.
We compress the network and execute the betweenness
computation on this compressed (and much smaller) net-
work. Accordingly, the problem becomes how to partition
the network in a fast way, such that, each part is com-
pressed into a single node. Here, we exploit the idea
of k-means clustering algorithm Alsabti et al. (1997),
by first randomly selecting +/]N| nodes as centroids

() GCC size:0.41 (K) GCC size:0.83 () GCC size:1.0

data structure is used to keep track of these connected components, thus
it is easy to compute the GCC size in each step. The time complexity
of this improved R computation is O (| E| * log|N|)

and then assigning the remaining nodes to the nearest
centroid through a multiple starting points breadth-first
search process. Each centroid and the nodes assigned to
it are regarded as a cluster node. In the compressed net-
work, clusters are contracted into single nodes, and the
links between different clusters are edges. After that, we
compute the betweenness centrality in this compressed
network. Finally, for generating the initial individuals, the
nodes are sorted according to the betweenness of the clus-
ter they belong to and the degree of the nodes. Figure 5
visualizes the process of this algorithm. The naive parti-
tion algorithm performs rather well in our experiments.

3. R-type: This type of individual is generated randomly.
It is simply a random permutation of all nodes and can
be computed in linear time. The result of random attack
may be poor, but random individuals could provide more
directions for population evolution. We believe random
individuals can help to discover interesting parts of the
search space, which are not (directly) covered by central-
ity metrics.

3.5 Genetic operators

The operators covered in standard genetic algorithms include
selection, crossover, and mutation. We describe below how

@ Springer

W. Lin et al.

0.8

0.6

0.4

0.2

Q

(a) Select centroids (b) Colored by clusters

Fig. 5 Example visualization of the B-type individual generation for
the road network of Chengdu with 1,902 nodes and 3,052 edges. a Ran-
domly select /[N| nodes as centroids. b Assign the remaining nodes to
the nearest centroid, forming /[N clusters. This can be done by a multi-
ple starting points breadth-first search process. ¢ Compress each cluster

these three operators are implemented for the network dis-
mantling problem.

3.5.1 Selection

The first operator is the selection of individuals for mating.
The goal is to preferably select individuals with a high fitness.
We apply fitness proportionate selection with the stochas-
tic universal sampling (SUS) Baker (1987). Unlike fitness
proportionate selection, SUS uses a single random value to
select all individuals by choosing with evenly space inter-
val, which give individuals with small fitness value a chance
to be chosen. In addition, for the sake of avoiding popula-
tion degradation over time, we implement elitism, i.e., we
always retain the top ten percent individuals to the next gen-
eration Ahn and Ramakrishna (2003).

3.5.2 Crossover

After the parents are selected, we need to compute the off-
springs, based on the parent chromosomes. The standard
procedure for performing the crossover is to split the par-
ent chromosomes at one or more places and then distribute
the segments to the children. This naive crossover does not
work here, since we have to make sure that the attacks in
each child cover all nodes in the network. Instead, all nodes
in parent chromosomes are weighted by a random number
between zero and the absolute size of GCC after removing
the node. Thus, the nodes in the front are more likely to have
higher weights. Then, the nodes are sorted by their weights
and the result of sorting is the offspring chromosome. The
pseudo-code for crossover is shown in Algorithm 2.

@ Springer

0.0

(d) Colored by
betweenness of
clusters

(c¢) Compressed network,
colored by betweenness

to one node in the compressed network, and compute the betweenness
centrality. d To generate the B-type individual, nodes in the original net-
work are sorted according to the betweenness of the cluster they belong
to

Algorithm 2 Crossover operator (pseudo code)

Input: parenty, parentp, GeeSizea, GeeSizep, networkG
Output: childy, childp

1: Ave_GceceSize < {n: (GeeSizealn] 4+ GeeSizeg[n])/2}Vn € G

2: weightsa < {n : random.uniform(0, Ave_GccSize[n])} ViinG
3: weightsp <—{n : random.uniform(0, Ave_GccSize[n])} Vne G

4: childy < sorted n by weightsa[n]
: childp < sorted n by weightsg[n]
6: return childa, childp

9]

3.5.3 Mutation

The mutation operator maintains the diversity among chro-
mosomes and is able to introduce previously unseen proper-
ties Smith and Fogarty (1996). For a given attack sequence,
we cannot simply change individual nodes, because we need
to cover all nodes in an attack. Accordingly, the idea is to
select two nodes and exchange their positions. In order to
reduce the R value, our goal is to move more destructive
nodes to the front of the attack sequence. We quantify the
importance of a node i with a special value, A;CC, which is
defined as the change of GCC size after removing the node i.
This Ag,. is obtained while computing the fitness value. We
select two nodes, one with high Ag.. and the other with low
Agec, still using the roulette wheel method. All the nodes are
weighted by Ag . when selecting the first node and 1 — Ag,.
when selecting the second node. Then, we switch the one
with higher A, to the front, with the intention that the
switch will make the network cascade appear earlier. This
process is repeated for @ times for each chromosome (See
Sect. 4.1 for sensitivity analysis of GA). However, in our
experiment, we found that the effect of mutation became
more negative, i.e., mutation are more likely to worsen the

Efficient network dismantling through genetic algorithms

R=0.360 R=0.129
107 —— Absolute GCC size ‘521925’1 d718 107 —— Absolute GCC size
—— Delta GCC size 28 1\ /,1613 —— Delta GCC size
~_14
. 302829 2 0.8 4
kS 26 8
= 2755 23 | %
oo 55354 | O oo
©) 41 3633 G]
3 3. 5
'Té , 394038 Té 041
.+=9
2 11 i' \\12 ZB
/
) 8 02
44 a4
a1 \8
434‘}) 004

0 10 20 30 40 50
Number of removed nodes

Fig.6 Processof mutation. a The attack curve of an individual is shown.
The orange line represents the change of GCC size after removing one
node. It is easy to see that the node with highest A is in the middle
of the attack sequence. b The network is visualized here, nodes are col-

individual, with an increasing number of iterations. There-
fore, we set a parameter mutation decay D to control the
mutation probability of an individual. The mutation proba-
bility is Pputation = nLD, where n is the number of iterations.
(See Sect. 4.1 for more detail about the specific parameter
adjustment.) Figure 6 visualizes the process of one mutation.
Node 0 has the highest A, value, but it is not in the front of
the original attack sequence. We can see that after switching
node 0 and node 21, the R value of this attack sequence is
reduced significantly.

4 Experimental evaluation

In the following section, we evaluate all techniques on arange
of real-world networks. These networks were obtained from
network repository Rossi and Ahmed (2015), the largest,
interactive network data repository. All network data is pro-
vided in a standardized format. The networks come from a
variety of applications and domains (e.g., network science,
bioinformatics, machine learning, data mining, physics, and
social science). In total, 49 networks were selected for our
study. The number of nodes in these networks is 544—4,182
(with an average of 1,353), and the number of edges is 1,538—
4,284 (with an average of 2,994). Overall, this makes the
networks in our study rather sparse and fragile, which makes
sense intuitively, since we are interested in computing harm-
ful network attacks.

The remainder of this section is organized as follows.
First, we report the results of sensitivity analysis regarding
the parameters of our GA method (Sect. 4.1). Given that
GA is a non-deterministic algorithm (unless a fixed seed is

Colored by Delta GCC size

0 10 20 30 40 50
Number of removed nodes

ored by their A value. Node 0 has the darkest color, i.e., highest A4
value. ¢ After we switch Node O to the front of the attack sequence, the
network cascade appears earlier, resulting in much lower R value

used), we report on the variance of results under different
seeds in Sect. 4.2 and the impact of initial solution genera-
tors in Sect. 4.3. In Sect. 4.4, we report on the comparison
of GA with the state-of-the-art in the dismantling literature.
In addition, Sect. 4.5 assesses the ability of GA to improve a
given network attack, as computed by the state-of-the-art.
Section 4.6 investigates a different perspective, exploring
whether we can achieve results on par with BI, without actu-
ally using BI. Finally, Sect. 4.7 reports further results on the
scalability of GA.

4.1 Sensitivity analysis of GA parameters

In a first set of preliminary experiments, we perform sen-
sitivity analysis on five selected parameters of GA. These
parameters are:

e Population size: The number of individuals in the pop-
ulation.

e Non-improvement iterations: The termination criterion
in our implementation, defining the maximum number of
iterations without improvement.

e Elitism rate: The ratio of the best individuals which are
preserved from one generation to the next one.

e Mutation rate: The number of genes (nodes) which are
mutated for a new offspring.

e Mutation decay: This number controls the mutation
probability of an individual and how the probability
decreases in later generations.

We have performed sensitivity analysis on seven networks.
These seven networks come from different domains and have

@ Springer

W. Lin et al.

1.04 5 u

0.8 H H

ormalized R
=
>

L
n
n

0.4 - ul

N

0.0 5 u

T T T

T T T T T T T T T T T T T

[=ielolelolololelalaleye] 0 =} 0 o 0 — [a]

—FANAMNFIOOI~-00HIOO D — — ™ [a] S =)
v—u.og

(a)Population size (b) Non-improv. iterat.

(¢) Elitism rate

0.3

T
=
S

0.54

T T
2 <«
S S

0.74

T T
*® =
S S

0.4
0.7

T T
— (=)
o —

0.001 4
0.005 4
0.01 4

(d) Mutation rate (e) Mutation decay

Fig.7 Analysis of genetic algorithm parameters in terms of the quality of network attacks

1.04 5 u

= = 4
IS =Y %
L L L
T T T

T T T

Normalized runtime

ho
L
T
T

0.0 5 u

10
204
304
404
50 4
60 4
70 4
80 4
5
10
5
20 4
5

T T
— [}
o o

90 4
100 4
500 -

1000 4

(a) Population size (b) Non-improv. iterat.

Fig.8 Analysis of genetic algorithm parameters in terms of runtime

different topologies. We mainly analyze the results of our
algorithm under different parameters from two dimensions:
Attack quality and runtime. Here, in order to show the com-
parison results straightly, we have normalized both the R
values and the runtime with the minimum value to 0, and the
maximum value to 1. Figure 7 and Fig. 8 show the results
of this experiment. For population size, with the increment
in individuals, the runtime also increases significantly. It is
almost a linear relationship. At the same time, the R value
has also gone down. We can observe that as the popula-
tion size increases, the decreasing trend of R value gradually
flattens out, which shows a marginal effect. The increase in
non-improvement iterations leads to the increase in runtime,
but surprisingly, there was no significant improvement in the
quality of the results. Elitism rate and mutation rate have no
influence on both runtime and attack quality. As for muta-
tion decay, larger mutation decay will cause worse results but
with shorter runtime.

According to the analysis above, we select three represen-
tative parameter settings, which have different performance
in terms of the speed and quality of the results, respectively.
GAF is more focused on runtime, GAH is more focused on
quality of results, and GAM is an intermediate version. The

@ Springer

(¢) Elitism rate

0.3

T
~#
o

0.54

T T
2 <
S S

0.74

T T
*x <
S S

0.4
0.7 4

T T T
- - o
= - d
- o —

o

(e) Mutation decay

0.001 4
0.005 4

(d) Mutation rate

details are shown in Table 2. In order to reduce the variables,
in the rest of the study, we use these three GA instances for
specific experiments.

4.2 Spread/distribution of R-values and runtime for
different runs of GA

GA is a non-deterministic algorithm, i.e., even for the same
input, GA can exhibit different behaviors on different runs.
Hence, we should further check the stability of GA. We car-
ried out the experiments on 49 medium-size networks. Each
GA instance attacked the same network for seven times. For
each GA instance and each network, we compute the stan-
dard deviation of the runtime and R values. The results are
shown in Fig. 9, where darker part in the lower left corner
indicates more stability. In the figure, we can clearly observe
that the three GA instances have different stability for run-
time and R value. GAF has a narrow runtime distribution,
but the standard deviation of its R value is the highest. GAH
shows the opposite, it has a narrow R value distribution but
it is not stable regarding runtime performance. GAM main-
tains a good trade-off between the stability of runtime and
quality of results.

Efficient network dismantling through genetic algorithms

Table2 Three GA instances of different parameter settings. GAF focuses more on runtime; GAH focuses more on the quality of the result; GAM

is a trade-off between both

GA instances Population size

Non-Improv. Iterat.

Elitism rate Mutation rate Mutation decay

GAF (Fast) 10 5
GAM (Median quality) 30 10
GAH (High quality) 50 15

0.5 0.5 1
0.5 0.5 0.4
0.5 0.5 0.1

Competitor: GAF

0.020

Competitor: GAM

Competitor: GAH

0.015 bl

—

— SN

50 70 90 10 30 50 70 90
o(runtime) in s

(b) (©

cddel 4
ch7-8-bl 4
ch7-9-bl 4
ch8-8-b1 4

flower-8-1 4
gasll
jpwh-991
Ip-degen2
Ip-nug07 4
Ip-scrs8 4
Ip-stair -
Ipi-pang 4
Ipi-reactor -
modell 4
n4c6-b2
nsic 4
rdb800I 4
rdb968 4
shl-400
small 4

50.010« B
S
0.005 A A 1
10 30 50 70
o(runtime) in s o(runtime) in s
(a)
Fig.9 Standard deviation of the runtime and R value of three GA instances
R 80 1
B
0.4 D
704
60
0.31
@ 50 4
€
o =
C 404
0.2 2
301
014 209
10
0.0 T 0 T T T T T
2~ BX¥ES88 YRy OE It EE8sS4255520¢388F Y 2 83¥¥8988
DN Q T o o S5 oo T o [a] DN Q
PR R Y SEEE R R VS St ie L L LE T T F A L
o g8 a9 5555 E’ .EEEE’QB_%ES'Egg T B:EWw § T Bgge a9
RS o= 2% 2% &
3 = 8 8

er-graph-1k-4k 4
moreno-propro 4

Network name

Fig. 10 Comparison for B/R/D-type individuals. We did experiments
on 38 networks. It can be clearly seen that D-type is superior to the
other two both in terms of solution quality and running time. In most

4.3 Comparison for initial population generators

In Sect. 3.4, we introduced three initial population generators.
In order to compare the effects of different initial populations,
we conducted comparative experiments on 38 networks. The
resultis shown in Fig. 10. In terms of the quality of results, D-
type has an obvious advantage since it can obtain the attack
sequence with the lowest R value in most networks. R-type
has the worst attack quality. This is intuitive, since random
attacks often do not hit the network’s weaknesses very well.
The result quality of B-type was slightly better than that of
R-type, but there was still a gap compared with that of D-

delaunay-n10 4
er-graph-1k-4k 4
kneser-6-2-1 4
Ip-gfrd-pnc 4
Ip-standata 4
Ip-standmps
maayan-Stelzl 4
moreno-propro 4
soc-wiki-Vote

Network name

networks, R-type has the worst performance and takes longer to run
than D-type. B-type’s attack quality is in the middle, but it takes the
longest running time

type. In terms of running time, D-type still performs best,
even faster than the purely random R-type. The B-type takes
the longest running time. However, in the actual application
of GA, compared with only using D-type, we prefer that the
above three initial population generation methods should be
mixed. Although D-type performs best, in some networks
with narrow degree distribution, D-type, based on degree
centrality, will lose its advantage. Accordingly, we recom-
mend having at least one D individual and at least one P
individual; the remaining individuals can be filled up with R
individuals.

@ Springer

W. Lin et al.

(a) GAF (b) GAM (c) GAH (d)D (e) DI
1.0
0.8
~
S
S 0.6
=
= 04 §
2]
Z 0.2 n
" 47 (¥ 3
00 - - OB, 0
. 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Norm. runtime Norm. runtime Norm. runtime Norm. runtime Norm. runtime
(f) BI (g B (h) APTA (i) C12 J)ND
1.0 2
o]) }
= f
Fg 0.6
= f |
/E
Z 04 4 1]
5 q
.
0.2 1 U
0.0 T T T T T T T T T T T T T T T
0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Norm. runtime Norm. runtime Norm. runtime Norm. runtime Norm. runtime

Fig. 11 Overall comparison between GA and other methods. Each
subgraph contains 49 circles representing the results of attacks on 49
networks. To avoid contingency, we repeatedly attack the each network
with GA instances for seven times and select the median of the results

4.4 Overall comparison of GA against other methods

In Sect. 2.2, we describe in detail other representative meth-
ods that are commonly used in the network dismantling
literature. In a comparative analysis of approaches to network
dismantling, the authors identified betweenness interactive
(BD) as a reference competitor in terms of quality, but at the
cost of a quadratic cubic increase in running time Wandelt
et al. (2018). Therefore, we use this method as a baseline.
In this subsection, we make a comparison of GA and other
methods. The results are shown in Fig. 11, and we also nor-
malized the runtime and R value. Each subfigure has 49
circles, respectively, representing the attack results of the cor-
responding algorithm on a network. Considering that GA is
anon-deterministic algorithm, in order to avoid contingency,
we use GA to attack each network for seven times and use
the median of the results to represent GA’s performance to
this network. As can be seen in the figure, BI can get the best
result in most networks, but it also takes the longest time, its
data points are concentrated in the lower right corner. The
scattered points in the GA’s chart are distributed along the
x-axis, which means that GA can get the results with rather
high quality, while not spending such long runtime as BI.
The other six methods can be executed in short time, but the
quality of results is worse. In summary, GA significantly out-

@ Springer

to represent the performance of GA instances. It can be seen that GA
can get rather low R values while spending much shorter runtime than
BI

performs the state-of-the-art methods. It can get results very
close to BI while spending much less runtime.

In order to more accurately illustrate the results of GA
comparison with other methods, we used the Bayesian
signed-up ranks test to compare GA with other competi-
tors Demsar (2006)Benavoli et al. (2017). This method was
originally used to compare classifiers in machine learning.
By changing the classifier to the network dismantling method
and the data set to the network, we can apply this Bayesian
comparison to the comparison of the network dismantling
method. We set the region of practical equivalence (rope) to
0.01, meaning that if the difference of R between the two
methods is less than 0.01, we assume that the two algorithms
behave similarly. The results are shown in Table 3. It can be
seen that GA can win overwhelmingly for all other algorithms
except BI. Even when compared to BI, GA can maintain sim-
ilar performance in high probability. Considering that GA is
much faster than BI in runtime, we think that GA achieves a
good tradeoff between result quality and runtime.

To verify the wide applicability of GA, in addition to R,
we also used another measure to compare GA with other
methods. The network functions through its GCC, so remov-
ing a single node has a limited impact on network integrity.
However, by removing multiple nodes from a network, the
network can be broken up into independent components. An

Efficient network dismantling through genetic algorithms

Table 3 Bayesian signed-up ranks test between GA and other algo-
rithms. We used the Bayesian signed-up ranks test to compare GA with
other competitors. The table shows the probability that GA can get bet-
ter results than other methods. For BI, GA has a high probability to
obtain results with similar attack quality. For other algorithms, GA can
always get results with lower R values

Competitors D DI BI B APTA CI2 ND
Win 1 0994 0 1 1 1 1
Lose 0 0 0304 0 O 0 0
Practical equivalence 0 0.006 0.696 0 0 0 0

interesting question is how many nodes must be removed
before the network can be broken down into independent
components thus lose its function. Another commonly used
measure, which we will call C here, is defined as the per-
centage of nodes to be removed which make the GCC size
less than 10% of the total number of nodes in the network.
We compared the attack results of the three GA instances
with other methods based on this metric, and normalized the
results. As shown in Fig. 12, BI still performs best, usually
with the fewest nodes removed. The distribution of GA is
also concentrated on smaller C, indicating that GA is signif-
icantly better than other algorithms except BI. We can see
that GA can also achieve performance close to BI under dif-
ferent criteria, which illustrate the generality of GA based on
R value.

4.5 How does GA improve the results of other
methods?

GA can be used not only as an attack strategy itself, but also
in combination with other methods to further improve their
results. Here, we present the results of seven existing methods
to the initial population of GA, respectively. We compute the
R improvement of different GA instances. The R improve-
ment is normalized by using Normalized Rjmprovement =
(Roriginal — R finai)/ Roriginal- The increased runtime is also
normalized in a similar way. The results are shown in Fig. 13.
For different conventional methods, the benefit of GA varies.
It depends on the quality of the method itself. GA can reduce
the R value by 20% ~ 40%. As for the runtime, many of
the conventional methods we selected here have linear time
complexity, so GA’s runtime increases considerably relative
to their own runtime. Different GA instances vary in their
performance in terms of increased runtime, with GAH being
several times as large as GAF. However, for methods with
quadratic or higher time complexity, the additional runtime
by GA is trivial. In combination with the result quality and
the runtime, GA can provide a good trade-off to significantly
improve the quality of the results by increasing the runtime
within a reasonable range.

4.6 Can GA beat BI, without using BI?

By far, Bl is the best algorithm if only considering the quality
of the results. Compared with other state-of-the-art methods,

APTA

count

0.0 0.5
Normalized C

CI2

1.0 15 0.0 0.5

Normalized C

1.0 15 0.5 0.0

05
Normalized C

GAF

1.0 15 0.0 0.5
Normalized C

GAM

1.0 15 0.0 0.5
Normalized C

GAH

1.0 15

count
Count
o
5

Count
~
o
Count

0.0 0.5

Normalized C

1.0 0.0 0.5

Normalized C

1.0 0.0

Fig. 12 Comparison for different network dismantling algorithms
based on metric C. We compare the attack results of seven common net-
work dismantling algorithms and three GA instances. The graph shows
the quality of the attack results by these ten competitors on 49 networks.

05
Normalized C

1.0 0.0 0.5

Normalized C

1.0 15 0.0 0.5

Normalized C

1.0

We normalized the results, mapping them linearly on the interval from
0 to 1. BI still gets the best results. With the exception of BI, GA can
outperform other competitors by a wide margin

@ Springer

W. Lin et al.

AF 0 GAM I GAH 12.5
-
ji 4 _ E
o $ $ i o) 10.0 N
o ! g .
< - 4
2 R '
R ~ 5.0
= ¢
= L
5 g 25 t !
3 = 0.0 ! ‘ ‘
< — e
g % T
3 2 '
7. —2.51 MK
5.0 1 GAF [0 GAM Il GCAH
—b.
D DI APTA B Cl2 BI ND D DI APTA B Cl2 BI ND
Conventional method Conventional method
(a) Normalized R improvement (b) Normalized increased runtime
for different original methods for different original methods
Fig. 13 Improvement GA makes based on different conventional methods
- GAF GAM GAH
4
E 1.0 1 1
=
g
= 0.81 9 9
=
4
g
< 064 b R
=
<
—
D
T 041 1 . L _ 1
2
3
o 0.2 1 :
<
S
=
O
% 0.0 1 1
A~ 0000 0002 0004 0006 0008 000 0.03 006 009 012 015 018 00 0.2 04 0.6

Runtime ratio

(a)

Runtime ratio

Runtime ratio

(b) (©)

Fig. 14 GA based on other conventional methods competes with BI. The x-axis value is the ratio of GA runtime to BI’s. The y-axis value represents
the ratio of GA beating BI when the runtime ratio is less than the corresponding value of x-axis

itcan get the best results on most networks. However, Bl takes
cubic runtime, which makes it difficult to scale up to larger
networks. Here, we make a comparison between Bl and GA
with different initial populations, and see to what extent GA
can compete with BI. Figure 14 shows the results of three GA
instances. The x-axis is the runtime ratio of GA and BI. The
y-axis represents the ratio that GA results are better than BI
when the runtime ratio is less than the corresponding value of
x-axis. As a result, GA takes far less time than BI. Even the
slowest GAH is mostly less than half the runtime of BI, while
for the faster GAF only takes less than 1% runtime. In terms
of the quality of the results, although only a small part of the
results can exceed BI, the difference between the results of
most GA and BI is rather minor. The quality of the results
slightly deteriorated, while the runtime is greatly improved.

@ Springer

This means that GA can be applied to large-scale networks,
making it more practical in real-world applications.

4.7 Runtime analysis of GA

GA does not come with a fixed time complexity that can
be calculated analytically like other methods. The runtime
of GA can be considered as the product of average number
of iterations and the runtime of each iteration. We found
in the experiment that the runtime of each iteration was
mainly spent on the fitness function. As we have discussed in
Sect. 3.3, the time complexity of computing the fitness func-
tionis O(|E|*xlog|N|), where | E| represents the number of
edges and N represents the number of nodes. Hence, we can
conclude that each iteration of GA takes O (| E|*log|N|) run-

Efficient network dismantling through genetic algorithms

e
500 1
400+
e []
< 300
=
=
=
= 2004
100
[} L Y oo
O L T T T T T T T T L T T T T T T
500 1000 1500 2000 2500 3000 3500 4000 1500 2000 2500 3000 3500 4000
number of nodes number of edges
(a) (b)

Fig.15 Runtime analysis of GA. a and b show the relationship between the runtime and the number of nodes/edges, respectively. Logistic regression
model is used to fit the growth curve. In general, the runtime of GA is linear with |N| and |E|

time. However, it is hard to predict the number of iterations
of GA beforehand. Therefore, we compute the runtime on 49
networks, aiming at giving a general estimation of GA’s time
complexity. In Fig. 15, we show the relationship between the
runtime and the number of nodes or edges, respectively. We
also use logistic regression model to fit the growth curve. It
can be seen that except for a few extreme cases, the runtime
of GA is basically linear with |N| and |E|, which ensures
GA scaling up quite well.

5 Conclusions

Network dismantling plays an important role the in the eval-
uation of network robustness. However, finding the optimal
attack strategy is an NP-hard problem, existing methods often
use node centralities or tailored heuristics to measure the
importance of nodes to seek the attack strategies. Experi-
mental results show that these methods cannot achieve a good
balance between the quality of the results and the runtime:
BI can obtain high-quality result, but at the same time, it has
the highest computational complexity of at least cubic in the
number of nodes; other methods can be executed much faster
than BI, but with inferior attacking quality.

In this study, we proposed a novel network attacking
method based on genetic algorithms. We developed three
types of initial population, which provide good evolutionary
input for networks of various topologies. We proposed a set
of genetic operators, which have the tendency to place criti-
cal nodes to the front of the attack sequence. These operators
can expand the search space of GA, and has the potential
to improve the quality of the population. To evaluate the
performance of an attack, we designed a novel method to

compute the R value. Instead of directly computing the R
value in a forward way, we proposed to compute it with
the process of building up the network in the reverse order
of the attack sequence. This backward structure can signifi-
cantly reduce the time complexity of computing R, requiring
only linear time. In order to select various parameters of GA
appropriately, we conducted sensitivity analysis on variants
of our method, and evaluated their performance from the
aspect of runtime and solution quality, respectively. Three
representative parameter settings with different patterns are
selected. We tested these three GA instances on a wide range
of real-world networks. The results showed that our method
significantly outperforms the state-of-the-art methods. It can
get the attack sequence of rather high quality, while spend-
ing much less runtime than BI, which make a good trade-off
between quality of results and runtime.

Taken together, our study provides a different perspective
on the network dismantling, using GA to generate attacks to
the networks. There are still a few limitations in this study.
First, for some networks with high symmetry, such as stan-
dard grids, GA has rather limited improvement to population
in each iteration. Second, we did not consider the non-
uniform cost of deleting nodes Ren et al. (2019). In reality,
it may require extremely great effort to remove the criti-
cal nodes due to special protection measures. Future work
could investigate the network dismantling problem under
non-uniform cost consideration. Other directions for future
work include the use of extended genetic algorithm variants,
such as multi-population genetic algorithms Shi et al. (2020)
and cellular genetic algorithms Dahi and Alba (2020); the
role of communities Zalik and Zalik (2019), Wandelt et al.
(2021) for network dismantling could be exploited further as
well. Finally, it might be possible to exploit the idea of sub-

@ Springer

W. Lin et al.

network centrality Cerqueti et al. (2020) for efficient network
dismantling.

Funding This study is supported by the National Natural Science Foun-
dation of China (Grants No. 61861136005, No. 61851110763, No.
71731001).

Availability of data and material The data underlying this study are
available from the corresponding author upon reasonable request.

Declarations

Conflict of interest Author Wei Lin declares that he has no conflict
of interest. Author Sebastian Wandelt declares that he has no conflict
of interest. Author Xiaogian Sun declares that she has no conflict of
interest.

Code availability The code underlying this study are available from the
corresponding author upon reasonable request.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Ahn CW, Ramakrishna RS (2003) Elitism-based compact genetic algo-
rithms. IEEE Trans Evol Comput 7(4):367-385

Albert R, Albert I, Nakarado GL (2004) Structural vulnerability of the
north american power grid. Phys Rev E 69(2):025103

Albert R, Barabasi A-L (2002) Statistical mechanics of complex net-
works. Rev Mod Phys 74(1):47

Alsabti K, Ranka S, Singh V (1997) An efficient k-means clustering
algorithm

Ash J, Newth D (2007) Optimizing complex networks for resilience
against cascading failure. Physica A 380:673-683

Baker JE et al (1987) Reducing bias and inefficiency in the selection
algorithm. In: Proceedings of the second international conference
on genetic algorithms 206:14-21

Benavoli A, Corani G, Demsar J, Zaffalon M (2017) Time for a change:
a tutorial for comparing multiple classifiers through bayesian anal-
ysis. J Mach Learn Res 18(1):2653-2688

Bonacich P (1972) Factoring and weighting approaches to status scores
and clique identification. J Math Sociol 2(1):113-120

Brandes U (2001) A faster algorithm for betweenness centrality.] Math
Sociol 25(2):163-177

Braunstein A, Dall’ Asta L, Semerjian G, Zdeborova L (2016) Network
dismantling. Proc Natl Acad Sci 113(44):12368-12373

Brooker P (2010) Fear in a handful of dust: aviation and the icelandic
volcano. Significance 7(3):112-115

Cerqueti R, Clemente GP, Grassi R (2020) Influence measures in sub-
networks using vertex centrality. Soft Comput 24:8569-8582

Clemente GP, Cornaro A (2020) A novel measure of edge and ver-
tex centrality for assessing robustness in complex networks. Soft
Comput 24:13687-13704

Colizza V, Barrat A, Barthélemy M, Vespignani A (2006) The role of the
airline transportation network in the prediction and predictability
of global epidemics. Proc Natl Acad Sci 103(7):2015-2020

Conchon, S., Filliatre, J.-C.: A persistent union-find data structure. In
Proceedings of the 2007 workshop on Workshop on ML, pages
37-46, (2007)

@ Springer

Corsi, S., Sabelli, C.: General blackout in italy sunday september 28,
2003, h. 03: 28: 00. In: IEEE Power Engineering Society General
Meeting, 2004, pages 1691-1702. IEEE, (2004)

Cuadra L, Salcedo-Sanz S, Del Ser J, Jiménez-Fernandez S, Geem ZW
(2015) A critical review of robustness in power grids using com-
plex networks concepts. Energies 8(9):9211-9265

DahiZA, Alba E (2020) The grid-to-neighbourhood relationship in cel-
lular gas: from design to solving complex problems. Soft Comput
24:3569-3589

Demsar J (2006) Statistical comparisons of classifiers over multiple data
sets. J Mach Learn Res 7:1-30

Duijn PA, Kashirin V, Sloot PM (2014) The relative ineffectiveness of
criminal network disruption. Sci Rep 4:4238

Freeman LC (1977) A set of measures of centrality based on between-
ness. Sociometry, pages 3541

Friedkin NE (1991) Theoretical foundations for centrality measures.
Am J Sociol 96(6):1478-1504

Gao J, Liu X, Li D, Havlin S (2015) Recent progress on the resilience
of complex networks. Energies 8(10):12187-12210

Holme P, Kim BJ, Yoon CN, Han SK (2002) Attack vulnerability of
complex networks. Phys Rev E 65(5):056109

Katz L (1953) A new status index derived from sociometric analysis.
Psychometrika 18(1):39-43

Kitsak M, Ganin AA, Eisenberg DA, Krapivsky PL, Krioukov D, Alder-
son DL, Linkov I (2018) Stability of a giant connected component
in a complex network. Phys Rev E 97(1):012309

Lerman K, Ghosh R (2010) Information contagion: An empirical study
of the spread of news on digg and twitter social networks. arXiv
preprint arXiv:1003.2664

Merico D, Gfeller D, Bader GD (2009) How to visually interpret bio-
logical data using networks. Nat Biotechnol 27(10):921-924

Morone F, Makse HA (2015) Influence maximization in complex net-
works through optimal percolation. Nature 524(7563):65-68

Morone F, Min B, Bo L, Mari R, Makse HA (2016) Collective influence
algorithm to find influencers via optimal percolation in massively
large social media. Sci Rep 6:30062

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford
InfoLab

Peters K, Buzna L, Helbing D (2008) Modelling of cascading effects
and efficient response to disaster spreading in complex networks.
Int J Crit Infrastruct 4(1-2):46-62

Ren X-L, Gleinig N, Helbing D, Antulov-Fantulin N (2019) Generalized
network dismantling. Proc Natl Acad Sci 116(14):6554-6559

Rossi RA, Ahmed NK (2015) The network data repository with inter-
active graph analytics and visualization. In AAAI

Sabidussi G (1966) The centrality index of a graph. Psychometrika
31(4):581-603

Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011)
Mitigation of malicious attacks on networks. Proc Natl Acad Sci
108(10):3838-3841

Shi W, Long Xiaoqiu, Li Y, Deng D, Wei Y (2020) Research on the
performance of multi-population genetic algorithms with different
complex network structures. Soft Comput 24:13441-13459

Smith J, Fogarty TC (1996) Self adaptation of mutation rates in a steady
state genetic algorithm. In Proceedings of IEEE international con-
ference on evolutionary computation, pages 318-323. IEEE

Strogatz SH (2001) Exploring complex networks. Nature
410(6825):268-276

Sun X, Wandelt S, Linke F (2015) Temporal evolution analysis of the
european air transportation system: air navigation route network
and airport network. Transportmetrica B: Transport Dynamics
3(2):153-168

Tarjan RE, Vishkin U (1985) An efficient parallel biconnectivity algo-
rithm. SIAM J Comput 14(4):862-874

http://arxiv.org/abs/1003.2664

Efficient network dismantling through genetic algorithms

Tian L, Bashan A, Shi D-N, Liu Y-Y (2017) Articulation points in
complex networks. Nat Commun 8(1):1-9

Wandelt S, Shi X, Sun X (2021) Estimation and improvement of trans-
portation network robustness by exploiting communities. Reliabil
Eng Syst Safe 206:107307

Wandelt S, Sun X, Feng D, Zanin M, Havlin S (2018) A comparative
analysis of approaches to network-dismantling. Sci Rep 8(1):1-15

Wandelt S, Sun X, Zanin M, Havlin S (2017) QRE: quick Robustness
Estimation for large complex networks. Futur Gener Comput Syst
83:02

Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65-85

Yook S-H, Jeong H, Barabdsi A-L (2002) Modeling the internets large-
scale topology. Proc Natl Acad Sci 99(21):13382-13386

Zalik KR, Zalik B (2019) Node attraction-facilitated evolution algo-
rithm for community detection in networks. Soft Comput 23:6135—
6143

Zanin M, Lillo F (2013) Modelling the air transport with complex net-
works: a short review. Eur Physic J Special Topics 215(1):5-21

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Efficient network dismantling through genetic algorithms
	Abstract
	1 Introduction
	2 Preliminaries on network robustness
	2.1 Complex network terminology
	2.2 Network robustness

	3 Solution methodology
	3.1 Overall algorithm
	3.2 Chromosome representation
	3.3 Fitness function
	3.4 Initial population
	3.5 Genetic operators
	3.5.1 Selection
	3.5.2 Crossover
	3.5.3 Mutation

	4 Experimental evaluation
	4.1 Sensitivity analysis of GA parameters
	4.2 Spread/distribution of R-values and runtime for different runs of GA
	4.3 Comparison for initial population generators
	4.4 Overall comparison of GA against other methods
	4.5 How does GA improve the results of other methods?
	4.6 Can GA beat BI, without using BI?
	4.7 Runtime analysis of GA

	5 Conclusions
	References

